श्री जैन (पी.जी.) कॉलेज, बीकानेर

# SP-1115-A

Shri Jain P G College, Bikaner

# M.Sc. (Previous) Examination, 2018

### **COMPUTER SCIENCE**

MCS-106

## (Mathematics for Computer Science)

Time allowed: Three hours

Maximum Marks: 50

### SECTION-A (Marks : $2 \times 10 = 20$ )

Answer all ten questions (Answer limit 50 words). Each question carries 02 marks.

SECTION-B (Marks:  $3 \times 5 = 15$ )

Answer all five questions. Each question has internal choice (Answer limit 200 words). Each question carries 03 marks.

SECTION - C (Marks:  $5 \times 3 = 15$ )

Answer any three questions out of five (Answer limit 500 words). Each question carries 05 marks.

### SECTION - A

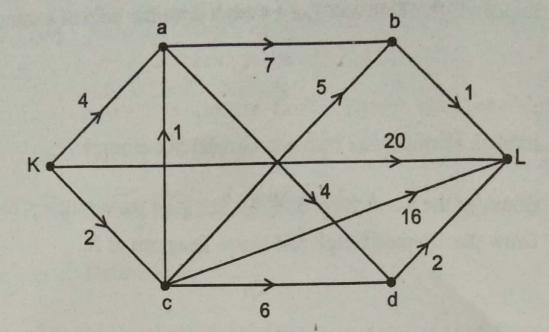
## 1. Attempt all questions:

| (i) | Define Section Formula for Internal Division. | [2] |
|-----|-----------------------------------------------|-----|
|-----|-----------------------------------------------|-----|

(ii) Define Position Vector.

[2]

(iii) Define Area of a Triangle.


[2]

SP-1115-A

(1)

P.T.O.

|   | (iv)   | Write the distance between Two Points Formula.               | [2]   |   | 4. | Explain Euler Path and Euler Graph with the help of example               |     |
|---|--------|--------------------------------------------------------------|-------|---|----|---------------------------------------------------------------------------|-----|
|   | (1.)   | Define Directed Graph.                                       | [2] - |   | *  | [3                                                                        | ]   |
|   | (v)    | Denne Directed Graph.                                        | [-]   |   |    | Or                                                                        |     |
|   | (vi)   | Write Multi Graphs.                                          | [2]-  |   |    | Explain Hamiltonian Path and Graph with example.                          | 3]  |
|   | (vii)  | Define Partially Ordered Relation.                           | [2]   |   | 5. | Consider the Set A = $\{4, 5, 6, 7\}$ . Let R be the relation $\leq$ on A | A.  |
|   | (viii) | Define Supermum.                                             | [2]   |   |    |                                                                           | 3]  |
|   |        |                                                              | 707   |   |    | Or                                                                        |     |
|   | (ix)   | Define Factorial Notations.                                  | [2]   |   |    | Explain Isomorphic Order Sets.                                            | 3]  |
|   | (x)    | Define Combination.                                          | [2]   |   | 6. | Explain Ordered and Unordered Partitions.                                 | [3] |
|   |        | SECTION - B                                                  |       | 1 |    | Or                                                                        |     |
|   |        |                                                              |       |   |    | Determine the value of n if:                                              | [3] |
|   | Find   | the angle between two vectors $(5\hat{i}+3\hat{j}+4\hat{k})$ | and   |   |    | ( ) 4 DD D+1D                                                             |     |
|   | (6i-   | $8\hat{j}-\hat{k}$                                           | [3]   |   |    | (a) $4 \times {}^{n}P_{3} = {}^{n+1}P_{3}$                                |     |
|   |        | Or                                                           |       |   |    | (b) $6 \times {}^{n}P_{3} = 3 \times {}^{n+1}P_{3}$                       |     |
|   | Find   | a unit vector perpendicular to both the vectors i-2j         | +3k   |   |    | SECTION - C                                                               |     |
|   |        | 1+2j-3k.                                                     | [3]   |   | 7  | . Show that the point A (2, -1, 1), B (1, -3, -5) and C (3, -4, -         | A   |
|   | and.   | 1723                                                         |       |   | 7. |                                                                           | [5] |
|   | Find   | the equation of a line passing through (3, -2)               | and   |   | 0  | . Find the equation of the circle passing through the point               | nts |
|   |        | endicular to the line $x - 3y + 5 = 0$                       | [3]   |   | 8. |                                                                           | [5] |
|   |        | Or                                                           |       |   | 9. | - to the state of the County between V and I be use                       | ns  |
|   | Find   | the equation of the straight line which passes thr           | ough  |   | 7. |                                                                           | [5] |
|   | (1,-   | 2) and outs of equal intercepts on the axes.                 | [3]   |   |    |                                                                           |     |
|   |        |                                                              |       |   |    | P-1115-A (3) P.T.                                                         | 0.  |
| F | -1115- | A (2)                                                        |       |   | SP | P-1115-A (3)                                                              |     |



- 10. Consider the set  $D_{50} = \{1, 2, 5, 10, 25, 50\}$  and the relation divides (/) be a partial ordering relation on  $D_{50}$ . [5]
  - (a) Draw the Hasse Diagram D<sub>50</sub> with relation divides
  - (b) Determine all upper bounds of 5 and 10
  - (c) Determine the Greates Lower Bound and Least Upper Bound of 5 and 10.
- 11. Explain PIGEON HOLE PRINCIPLE.

[5]

## M.Sc. (Previous) Examination, 2019 COMPUTER SCIENCE

#### MCS-106

### (Mathematics for Computer Sceicne)

Time allowed : Three hours Maximum Marks : 50

श्री जैन (पी.जी.) कॉलेज, वीकान्डेECTION-A

(Marks  $2 \times 10 = 20$ )

Answer all ten questions (Answer limit 50 words). Each question carries 02 marks.

SECTION - B

(Marks  $3 \times 5 = 15$ )

Answer all five questions. Each question has internal choice (Answer limit 200 words). Each question carries 03 marks.

SECTION - C

(Marks  $5 \times 3 = 15$ )

Answer any three questions out of five (Answer limit 500 words). Each question carries 5 marks.

#### SECTION - A

- 1. Answer the following:
  - (i) If  $\vec{a} = \hat{i} + 2\hat{j} 2\hat{k}$  then find magnitude of vector a.
  - (ii) Define zero vector.
  - (iii) Find distance between 2 points (2, 3) and (3, 6).
  - (iv) Write general equation of circle.
  - (v) Define subgraph of a graph.
  - (vi) Define cubic graph.
  - (vii) Define infimum.
  - (viii) Define well ordered set.
  - (ix) Define permutation.
  - (x) Find the value of  $\frac{7!}{3!}$ .

2

2

2

2

2

4

#### SECTION - B

2. If  $\vec{a} = 4\hat{i} - 2\hat{j} + 3\hat{k}$  and  $\vec{b} = 2\hat{i} + 7\hat{j} + 2\hat{k}$  then find  $\vec{a} \cdot \vec{b}$ .



OR

If  $\vec{a} = 4\hat{i} - 2\hat{j} + 3\hat{k}$  and  $\vec{b} = 2\hat{i} + 7\hat{j} + 2\hat{k}$  then find  $\vec{a} \times \vec{b}$ .

3. Find the equation of a line passing through (-2, 4) and parallel to the line 2x - y + 10 = 0.

Find the equation of line passing through two points (1, 3) and (4, -3).

Explain connected graph.

3

OR

4.

Explain Regular graph with the help of example.

5. Draw Hasse Diagram for (D<sub>12</sub>, /)

3

OR

Explain well order sets.

6. (i) If  ${}^{n}C_{12} = {}^{n}C_{8}$  then find the value of n.

11/2

(ii) Determine the value of n if  ${}^{n}P_{4} = 360$ .

11/2

OR

Find the Middle term in the expansion  $(x + 2y)^{10}$ .

3

#### SECTION - C

7. Show that the point A(2, 3, 4), B(3, 4, 2) and C(4, 2, 3) are the vertices of isosceles triangle in vector.

5

5

8. Find the radious and centre of given circle –  $x^2 + y^2 - 6x + 2y - 6 = 0$ 

5

9. In a polygon the number of diagonals is 54 then the find number of sides in polygon.

5

10. Explain Binomial Theorem.

11. Explain Shortest Path Algorithm.

5

M.56

# **BPG-1107**

# M.Sc. (Previous) Examination, 2021 COMPUTER SCIENCE

MCS-106

(Mathematics for Computer Science)

Time: 11/2 Hours ]

श्री जैन (पी.जी.) कॉलेज. बीकानेर

[ Maximum Marks: 50

Section-A

(Marks :  $2 \times 10 = 20$ )

Note: Answer all ten questions (Answer limit 50 words). Each question carries 2 marks.

Section-B

(Marks:  $3 \times 5 = 15$ )

Note: Answer all *five* questions. Each question has internal choice (Answer limit **200** words). Each question carries **3** marks.

Section-C

(Marks:  $5 \times 3 = 15$ )

Note: Answer any three questions out of five (Answer limit 500 words). Each question carries 5 marks.

Section-A

2 each

- 1. (i) Define Magnitude of vector.
  - (ii) Define like and unlike vector.
  - (iii) Write formula between two points.

BI-814

(1)

BPG-1107 P.T.O.

- (iv) Define Multigraph.
- (v) Define Infimum.
- (vi) Define Combination.
- (vii) Write decision formula for a straight line.
- (viii) Calculate:

$$\frac{\lfloor n \rfloor}{\lfloor n-1 \rfloor}$$

- (ix) Given example of weighted graph.
- (x) Define isomorphic graph.

Section-B

3 each

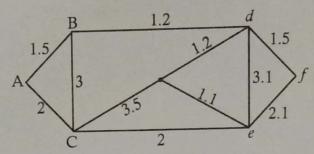
2. If  $\overrightarrow{a} = 2\overrightarrow{i} - 3\overrightarrow{j} + 5\overrightarrow{k}$  and  $\overrightarrow{b} = 3\overrightarrow{i} + 6\overrightarrow{j} + 8\overrightarrow{k}$  find value:

$$\left| 2 \stackrel{\rightarrow}{a} + \left( \stackrel{\rightarrow}{b} - \stackrel{\rightarrow}{a} \right) \right|$$

Or

$$\overrightarrow{a} = \overrightarrow{i} + 3\overrightarrow{j} + \overrightarrow{k}$$
 and  $\overrightarrow{b} = 3\overrightarrow{i} + 2\overrightarrow{j} + 0\overrightarrow{k}$  find  $2\overrightarrow{a} \cdot \overrightarrow{b}$ .

3. Find equation of line when slope of line is  $\tan \theta = \sqrt{3}$  and passing through (6, 4).


Or

Find equation of line when it passing through (2, 7) and (8, 7).

4. Find minimum color in given graph:



Find shortest path in below graph:

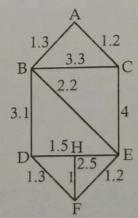


5. Draw Hasse diagram (D<sub>12</sub>, 1).

Define Consistent Enumeration with example.

6. Find value of n:

$$\frac{\lfloor n-1}{\lfloor n-2} = \frac{\lfloor 7 \times \lfloor 2 \rfloor}{\lfloor 6 \rfloor}$$
*Or*


Expand the following with binomial theorem:

$$(2x^2 + \sqrt{x})^4$$

#### Section-C

5 each

- 7. Find equation of line which is parallel to 2x + 3y + 6 and passing through (7, 2).
- 8. Find equation of circle if radius of circle is  $\sqrt{7}$  and coordinate of centre is (5, 2).
- 9. Find shortest path with prism algo from A to F:



- 10. Explain Pigeonhole principle with example.
- 11. Define ordered and unordered partition.